ارزیابی ایمنی جاده‌ای با تأکید بر پارامترهای محیطی: مسیر دهگلان به سنندج

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

10.22098/gsd.2025.17065.1082

چکیده

محور دهگلان به سنندج یکی از مواصلات مهم ارتباطی بین شهرستان دهگلان و سنندج و یکی از جاده‌های اصلی ارتباطی سنندج به تهران می‌باشد. عوامل طبیعی مختلفی در رخداد مخاطرات جاده‌ای تأثیر دارند که می‌توان به بارش، شیب، ارتفاع، حرکات دامنه‌ای، یخبندان و ... اشاره کرد. محور دهگلان به سنندج به دلیل عبور از مناطق کوهستانی، پرشیب، دامنه‌های با شرایط طبیعی و اقلیمی متفاوت، پتانسیل وقوع مخاطراتی همچون سیل، زمین‌لغزش، بهمن را دارد. پژوهش حاضر با در نظر گرفتن خصوصیات منطقه در صدد شناسایی و پهنه‌بندی مناطق حساس این محور می‌باشد. در این راستا ابتدا معیارهای محیطی مؤثر بر ایمنی جاده اعم از ارتفاع، شیب، جهت شیب، کاربری اراضی، بارش و یخبندان آماده و استانداردسازی شدند. در مرحله بعد وزن هر یک از معیارها با نظر کارشناسان خبره و با به‌کارگیری روش تحلیل سلسله مراتبی به‌صورت زوجی مقایسه و در نرم‌افزار Expert Choice موردبررسی قرار گرفت. در نهایت اقدام به تهیه نقشه ارزیابی ایمنی جاده‌ای گردید. بر اساس نتایج به‌دست‌آمده از پهنه‌بندی در محور موردمطالعه، میزان خطرپذیری این محور به ترتیب 43/56 درصد در کلاس خطر بسیار کم، 17/2 درصد در خطر کم، 41/5 درصد در خطر متوسط، 74/10 درصد در کلاس خطر زیاد و 23/25 درصد در کلاس خطر بسیار زیاد استخراج و شناسایی شدند. همچنین نتایج نشان می‌دهد که کلاس خطر کم بیشتر در کلاس شیب 0 تا 10 درصد قرار دارد که 76 درصد از محور را در برگرفته است. اما پهنه‌های با خطر خیلی زیاد در ارتفاع بالای 2000 متر که دارای گردنه‌ها و شیب تند می‌باشد 21 و 3 درصد در کلاس ارتفاعی زیاد و خیلی زیاد قرارگرفته‌اند که حدود 1 درصد سطح محور را در برمی‌گیرد.  

کلیدواژه‌ها


عنوان مقاله [English]

Road Safety Assessment with Emphasis on Environmental Parameters: Dehgolan to Sanandaj Route

نویسندگان [English]

  • Pooya Zareei
  • masoumeh moghbel
Department of Natural Geography, Faculty of Geography, University of Tehran, Tehran, Iran
چکیده [English]

A B S T R A C T
The Dehgolan–Sanandaj corridor is one of the key transportation routes connecting Dehgolan County to Sanandaj and serves as a primary access road from Sanandaj to Tehran. Various natural factors influence road-related hazards, including precipitation, slope, elevation, mass movements, freezing, and others. Due to its passage through mountainous areas with steep gradients and diverse environmental and climatic conditions, this route is prone to hazards such as flooding, landslides, and avalanches. This study aims to identify and map the hazard-prone zones along this corridor by considering regional characteristics. To this end, key environmental criteria affecting road safety—including elevation, slope, slope aspect, land use, precipitation, and freezing—were first prepared and standardized. In the next step, the relative importance (weight) of each criterion was determined through expert opinion using pairwise comparisons within the Analytic Hierarchy Process (AHP), analyzed with the Expert Choice software. Finally, a road safety risk assessment map was developed. The zoning results revealed that the vulnerability levels along the studied route are distributed as follows: 56.43% in the very low-risk class, 2.17% in low-risk, 5.41% in moderate-risk, 10.74% in high-risk, and 25.23% in the very high-risk class. Moreover, results indicate that the low-risk zones predominantly occur in areas with 0–10% slope, covering approximately 76% of the route. In contrast, zones with very high risk are mainly located at elevations above 2000 meters, featuring mountain passes and steep slopes, with 21.3% and 3% falling into high and very high elevation classes respectively—collectively accounting for about 1% of the total route area
Extensive Abstract
Introduction
Currently, the functioning and progress of modern society heavily relies on road networks. Road networks are one of the vital networks whose damage can cause excess pressure on other networks, especially in emergency situations. Also, road transport networks, as the most widespread and accessible form of freight and passenger movement, are exposed to a wide range of natural and man-made hazards. Extreme weather conditions or natural disasters can significantly disrupt the transport network. Natural hazards such as floods, landslides, earthquakes and tsunamis have significant impacts on the ability of transport systems to provide safe, efficient and accessible transport. Many road hazards are associated with various climatic, hydrological, geomorphological, etc. factors. In this regard, the geographic information system, with its capabilities of linking spatial and descriptive environmental characteristics, is a suitable tool for assessing road hazards with an environmental approach. any road hazards are associated with various factors, including climatic, hydrological, geomorphological, and other environmental elements. In this context, Geographic Information Systems (GIS), with their capability to integrate spatial and descriptive environmental characteristics, serve as an effective tool for assessing road hazards through an environmentally oriented approach. Accordingly, this study aims to utilize Geographic Information Systems (GIS) and the Analytic Hierarchy Process (AHP) method to identify and evaluate the contributing factors to road hazards along the Dehgolan to Sanandaj route.
 
Methodology
In this study, the Analytic Hierarchy Process (AHP) method based on climatic variables was used to assess road safety on the Dehgolan-Sanandaj axis. In this regard, influential criteria including climatic data, land use, and physiographic characteristics were used to investigate the safety of the Dehgolan-Sanandaj axis. In this regard, six influential factors including slope, slope direction, digital elevation model, land cover, precipitation, and frost were selected. Each of the above criteria was extracted in the ArcGIS 10.8.2 software environment and standardized according to their nature. In the following, the Analytic Hierarchy Process (AHP) method was used to obtain the importance of each of these factors (criteria) in relation to road hazard risk.
 
Results and discussion
The study of the importance of the criteria shows that the slope factor has the greatest effect on the occurrence of road environmental hazards compared to other factors. Also, the land use criterion has the least effect on the occurrence of road hazards. The results show that most of the studied axis is in the low slope and very low risk class, which generally includes agricultural vegetation lands. According to Table (5), about 57 percent of the axis surface has very low risk, about 2 percent of the axis surface has low risk, and about 5 percent of the axis surface has medium risk. Along the Dehgolan to Sanandaj axis, the presence of a high-slope pass in the study area has caused about 10 percent of the axis surface to be in the high risk class and 25 percent of the axis surface to be in the very high risk class.
 
Conclusion
The occurrence of various environmental hazards, including floods, landslides, avalanches, etc., in interprovincial and urban road communications leaves significant human and financial losses. In order to reduce losses and increase the safety factor, it is necessary to predict, examine and analyze hazardous areas using various parameters. In this regard, using climatic, topographic and land cover criteria, environmental hazard zoning was carried out to assess the safety of the Dehgolan-Sanandaj axis. Based on the results obtained from zoning in the studied axis, the risk level of this axis was extracted and identified as 56.43% in the very low risk class, 17.2% in the low risk class, 41.5% in the medium risk class, 74.10% in the high risk class and 23.25% in the very high risk class. The results also show that the low risk class is mostly in the 0 to 10% slope class, which covers 76% of the axis. But the very high risk areas at an altitude above 2000 meters, which have passes and steep slopes, are 21 and 3 percent in the high and very high altitude classes, which cover about 1 percent of the axis area.
 
Funding
There is no funding support.
  
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Environmental hazards
  • road safety
  • Analytic Hierarchy Process (AHP)
  • Dehgolan–Sanandaj corridor
  1. اسفندیاری، فریبا. (1387). نقش اقلیم در ناپایداری دامنه‌های مشرف به جاده ارتباطی سرعین- پیست اسکی آلوارس. همایش ملی کاهش اثرات بلایای جوی و اقلیمی مرکز تحقیقات هواشناسی کاربردی استان اردبیل.
  2. اکرمی مقدم، بهار؛ ایلخانی پور زینالی، رسول و نیک مهر، سامان. (1403). پهنه‌بندی پتانسیل سیل‌گیری با استفاده از روش تحلیل سلسله مراتبی در استان کردستان. محیط‌زیست و مهندسی آب، 10(1)، 79-93.
  3. باقدم، عثمان؛ فرج زاده اصل، منوچهر و شایان، سیاوش. (1384). ارزیابی ایمنی جاده‌ای با رویکرد مخاطرات محیطی: مسیر سنندج مریوان با استفاده از GIS. مدرس علوم انسانی، 9(1 (پیاپی 38) ویژه‌نامه جغرافیا)، 1-16.
  4. برنا، رضا؛ محمدی، حسین و ثروتی، محمدرضا. (1389). ارزیابی سوانح و ایمنی حمل‌ونقل جاده‌ای با رویکرد مخاطرات اقلیمی در محور کرج – چالوس. جغرافیایی سرزمین، 7(25)، 53-64.
  5. شهابی، هیمن؛ خورشید دوست، علی‌محمد و حسینی، میرکامل. (1390). ارزیابی نقش عناصر اقلیمی بر تصادفات جادهای (مطالعه محور سقز) سنندج. فصلنامه تحقیقات جغرافیایی، 26(3)، 190-212.
  6. فلاح تبار، نصرت‌الله. (1379). تأثیر برخی عوامل جغرافیایی بر شبکه راه‌های کشور. مجله پژوهش‌های جغرافیایی، 38، 78-98.
  7. قاسمی، مهوش. (1393). شناسایی و ارزیابی مخاطرات محیطی محور ارتباطی کرمانشاه به همدان. پایان‌نامه کارشناسی ارشد جغرافیای طبیعی، گرایش مخاطرات محیطی، دانشکده علوم انسانی، دانشگاه سیستان و بلوچستان..
  8. کلانتری، علی و علیان، سحر. (1401). تحلیل تصادفات جاده‌ای با تأکید بر خصوصیات محیط و جاده در سیستم اطلاعات مکانی مطالعة موردی: محور کرج– کندوان. پژوهش‌های جغرافیای انسانی، 2(54)، 563-582.
  9. کرم، امیر. (1387). کاربرد روش فرآیند تحلیل سلسله مراتبی (AHP) در ارزیابی زمین برای توسعه کالبدی بر پایه عوامل طبیعی (مطالعه موردی: مجموعه شهری شیراز). تحقیقات کاربردی علوم جغرافیایی (علوم جغرافیایی)، 8(11)، 33-54.
  10. گلمرادی، غلامرضا. (1392). ارزیابی ایمنی جاده‌ای با رویکرد مخاطرات محیطی محور خلخال پونل. پایان‌نامه کارشناسی ارشد، دانشکده علوم انسانی، گروه جغرافیای طبیعی.
  11. Akrami Moghadam, B., Ilkhani Pour Zinali, R., & Nikmehr, S. (2024). Zoning of flood potential using the analytic hierarchy process (AHP) method in Kurdistan province. Environment and Water Engineering, 10(1), 79–93. [in Persian]
  12. Baghdom, O., Farajzadeh Asl, M., & Shayan, S. (2005). Road safety assessment with an environmental hazards approach: Sanandaj-Marivan route using GIS. Human Sciences Modares, 9(1, Special Issue on Geography), 1–16. [in Persian]
  13. Barna, R., Mohammadi, H., & Servati, M. (2010). Accident and road transportation safety assessment with climatic hazards approach in Karaj-Chalus route. Geographical Land, 7(25), 53–64. [in Persian]
  14. Bowen, W. M. (1993). Environmental decision making: AHP applications. Environmental Management, 17(6), 765-771.
  15. Bowen, William. M., (1993), AHP: Multiple Criteria Evaluation, in Klosterman, R. et al Eds, Spreadsheet Model for urban and Regional Analysis, new Brunwick: Center for Urban Policy Research.
  16. Brijs, T., Karlis, D., Van den Bossche, F., & Wets, G. (2008). A Bayesian model for ranking hazardous road sites. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171(1), 41-58.
  17. Buddhavarapu, P., Banerjee, S., & Prozzi, J. A. (2013). Impact of pavement roughness on vehicle free-flow speed. Journal of Transportation Engineering, 139(9), 902-910.
  18. Dawod, G.M., Mirza, M.N. & Al-Ghamdi, K.A. (2012). GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environ Earth Sci 67: 2205–2215.
  19. Dikau, R., & Glade, T. (2002). Dangers and risks of mass movements (Gefahren und Risiken von Massenbewegungen). Geographische Rundschau 54(1): 38–47.
  20. Dikau, R., & Glade, T. (2002). Landslide occurrence, evolution, and implications for environmental change in Europe. Geomorphology, 15(2), 117-143.
  21. Esfandiari, F. (2008). The role of climate in the instability of slopes adjacent to the Sarein-Alvars ski resort road. National Conference on Reducing the Effects of Meteorological and Climatic Disasters, Applied Meteorology Research Center of Ardabil Province. [in Persian]
  22. Fallah Tabar, N. (2000). The impact of some geographical factors on the country's road network. Geographical Research Journal, 38, 78–98. [in Persian]
  23. Ghassemi, M. (2014). Identification and assessment of environmental hazards in the Kermanshah-Hamedan transportation route.  Master's thesis, University of Sistan and Baluchestan. [in Persian]
  24. Golmoradi, G. (2013). Road safety assessment with an environmental hazards approach: Khalkhal-Pounel route. Master's thesis, University of [Institution Name]. [in Persian]
  25. Hassan, S.A., Amlan, H.A., Alias, N.E., Ab-Kadir, M.A. & Sukor, N.S.A. (2022). Vulnerability of road transportation networks under natural hazards: A bibliometric analysis and review. International Journal of Disaster Risk Reduction, 28(2), 319-343.
  26. Kalantari, A., & Aliyan, S. (2022). Analysis of road accidents with emphasis on environmental and road characteristics in GIS: Case study of Karaj-Kandovan route. Human Geography Research, 2(54), 563–582. [in Persian]
  27. Karam, A. (2008). Application of analytic hierarchy process (AHP) in land evaluation for physical development based on natural factors (Case study: Shiraz urban complex). Applied Research in Geographical Sciences, 8(11), 33–54. [in Persian]
  28. Kashani, A. T., & Shariat-Mohaymany, A. (2012). Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models. Safety Science, 50(5), 1040-1047.
  29. Keller, S, & Atzl, A. (2014). Mapping Natural Hazard Impacts on Road Infrastructure-The Extreme Precipitation in Baden-Württemberg, Germany, June 2013. Int J Disaster Risk Sci 5: 227–241. https://doi.org/10.1007/s13753-014-0026-1.
  30. Li, X., Wu, C., & Zhang, X. (2019). The impact of slope and topographic factors on road accidents: A GIS-based analysis. Transportation Research Part D: Transport and Environment, 67, 23-33.
  31. Naseri, H., & Mohammadi, M. (2020). Evaluation of road safety based on environmental parameters using GIS and AHP. Journal of Transportation Research, 45(3), 123-135.
  32. Naseri, H., Rahmani, F., & Ghasemi, A. (2017). The effects of frost occurrence on road safety in mountainous regions. Cold Regions Science and Technology, 134, 78-85.
  33. Quddus, M. A., Wang, C., & Ison, S. G. (2010). Road traffic congestion and crash severity: Econometric analysis using spatial panel data. Transportation Research Part A: Policy and Practice, 44(5), 337-346.
  34. Saaty, T. L. (1980).The Analytic Hierarchy Process. New York, NY: Mc Graw-Hill.
  35. Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill.
  36. Shahabi, H., Khorshid Doost, A. M., & Hosseini, M. K. (2011). Evaluation of the role of climatic elements on road accidents (Case study: Saqqez-Sanandaj route). Geographical Research Quarterly, 26(3), 190–212. [in Persian]
  37. Tacnet, J-M., Eric, M. & Somsakun, M. (2012). Analysis of importance of road networks exposed to natural hazards. Conference: AGILE'2012 International Conference on Geographic Information Science, Avignon.
  38. Toma-Danila, D., Armas, I, & Tiganescu, A. (2020). Network-risk: an open GIS toolbox for estimating the implications of transportation network damage due to natural hazards, tested for Bucharest, Romania, Nat. Hazards Earth Syst. Sci., 20: 1421–1439. https://doi.org/10.5194/nhess-20-1421.
  39. Winter, M-G., Shearer, B., Palmer, D., Peeling, D., Harmer, C., Sharpe, J. (2016). The Economic Impact of Landslides and Floods on the Road Network, Procedia Engineering, 143, 1425-1434. https://doi.org/10.1016/j.proeng.2016.06.168.
  40. Zare, M., Ahmadi, H., & Gholami, H. (2018). The role of precipitation in road erosion and its impact on road safety. Environmental Earth Sciences, 77(8), 305.
  41. Zareie, S., Sadeghi-Niaraki, A., & Choi, S. M. (2023). A GIS-based approach for accident hotspots mapping in mountain roads. Applied Geomatics, 15(1), 77-89.
  42. Zhou, C., Chen, M., Chen, J., Chen, Y, & Chen, W. A. (2024). Multi-Hazard Risk Assessment Model for a Road Network Based on Neural Networks and Fuzzy Comprehensive Evaluation. Sustainability, 16(6), 24-29. https://doi.org/10.3390/su16062429.
  43. Zhou, M., Yuan, M., Yang, G, & Gang, Mei. (2023). Risk analysis of road networks under the influence of landslides by considering landslide susceptibility and road vulnerability: A case study, Natural Hazards Research, ISSN 2666-5921. https://doi.org/10.1016/j.nhres.2023.09.013.
  44. Zhu, Z.J. & Zhang, Y. (2021). Flood disaster risk assessment based on random forest algorithm. Neural Comput. Appl., 34, 3443–3455.